
ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 7, Issue 3, pp: (21-24), Month: July - September 2019, Available at: www.researchpublish.com

Page | 21
Research Publish Journals

The Evolution of Application Performance

Management

TANMAY KELKAR

Abstract: As the complexity of enterprise systems increases, the need for monitoring and analyzing such systems

also grows. A number of companies have built sophisticated monitoring tools that go far beyond simple resource

utilization reports. For example, based on instrumentation and specialized APIs, it is now possible to monitor

single method invocations and trace individual transactions across geographically distributed systems. This high-

level of detail enables more precise forms of analysis and prediction but comes at the price of high data rates (i.e.,

big data). To maximize the benefit of data monitoring, the data has to be stored for an extended period of time for

ulterior analysis. This new wave of big data analytics imposes new challenges especially for the application

performance monitoring systems. The monitoring data has to be stored in a system that can sustain the high data

rates and at the same time enable an up-to-date view of the underlying infrastructure. With the advent of modern

key-value stores, a variety of data storage systems have emerged that are built with a focus on scalability and high

data rates as predominant in this monitoring use case.

Keywords: application performance management (APM).

1. INTRODUCTION

The performance of modern software applications has become a critical non-functional requirement. Unfortunately, due to

the increased complexity of such applications and the increased number of users, maintaining an adequate level of

performance becomes challenging. Performance regressions occur due to software updates that degrade the performance

of an application. Regressions have negative consequences such as increased costs of software maintenance and user

dissatisfaction. These regressions can even lead to substantial financial losses. Amazon shows that a delay of one second

in page load time can decrease Amazon’s sales by as much as $1.6 billion yearly [7]. As a result, a large amount of

research has focused on studying the causes of performance regressions in software applications and how to efficiently

detect such regressions primarily by mining various types of operational data (such as performance counters and logs). In

practice, performance regression testing is performed on a software application before its release to detect performance

regressions. Performance regression testing is the process of applying a workload on two versions of a software

application in order to detect whether the code changes have introduced regressions. Hence, performance regression

testing detects regressions when processing a stable workload due to code changes.

A plethora of research that analyzes performance data has been done to detect the performance regressions effectively. In

particular, prior research in mining software repositories has shown the effectiveness of applying mining approaches to

help developers identify performance regressions in large scale systems. However, most of such research is not easily

accessible to practitioners. On the other hand, Application Performance Management (APM) tools are commonly used in

practice. By integrating mining approaches on performance data into off-the-shelf performance monitoring tools, APM

tools are often used to detect anomalies in the performance, instead of identifying performance regressions. Because of

the availability of mining approaches that are already integrated into APM tools and the importance of identifying

performance regressions, practitioners often tend to leverage APM tools to identify performance regressions. However,

APM tools are not originally designed for that task and there exists no knowledge about their effectiveness for such a task.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 7, Issue 3, pp: (21-24), Month: July - September 2019, Available at: www.researchpublish.com

Page | 22
Research Publish Journals

2. BACKGROUND WORK

Currently, the Web is used quite differently than the purpose for which it was originally conceived—sharing scientific

information among a few scientists. The scope and complexity of current Web applications vary widely: from small scale,

short-lived services to large-scale enterprise applications distributed across the Internet and corporate intranets and

extranets. Web-based applications can be grouped into the seven categories [1], although a given application may belong

to more than one category. As Web applications have evolved, the demands placed on Web-based systems and the

complexity of designing, developing, maintaining, and managing these systems have also increased significantly. For

example, Web sites such as for the 2000 Sydney Olympics, 1998 Nagano Olympics, and Wimbledon received hundreds

of thousands of hits per minute [3]. They provided vast, dynamic information [2,4] in multiple media formats (graphics,

images, and video). Web site design for these and many other applications demands balance among information content,

aesthetics, and performance. Although numerous Web-based systems are in use now, the manner in which they’re

developed, deployed, and managed raises serious concerns (see the sidebar, “Problems of Web-Based Systems

Development: A Diagnosis”). Web developers often use ad hoc, hacker-type approaches, which lack rigor, systematic

techniques, sound methodologies, and quality assurance. The current problems surrounding Web-based system

development partially result from the continuing advances in Internet and Web technologies, the increase in commercial

Web applications, the frantic rush to be on the Web, and the need to quickly migrate legacy systems to Web

environments. Poorly developed Web-based applications that continue to expand have a high probability of low

performance and/or failure. Recently, large Web based systems have had an increasing number of failures (many of them

weren’t publicly acknowledged or documented). In certain classes of applications such as supply-chain management,

tendering and procurement, financial services, and emerging digital hubs or marketplaces, a system failure can propagate

broad-based problems across many functions, causing a major Web disaster. The cost of bad design, shabby development,

poor performance, and/or lack of content management for Web-based applications have many serious consequences. A

recent survey on Web-based project development by the Cutter Consortium (reported in its Research Briefs, 7 Nov. 2000)

highlighted problems plaguing large Web-based projects:

 Delivered systems didn’t meet business needs 84 percent of the time.

 Schedule delays plagued the projects 79 percent of the time.

 Projects exceeded the budget 63 percent of the time.

 Delivered systems didn’t have the required functionality 53 percent of the time.

 Deliverables were of poor-quality 52 percent of time.

As a result, developers, users, and other stakeholders have become increasingly concerned about the manner in which

complex Web-based systems are created as well as the level of system performance, quality, and integrity.

3. WHAT IS AN APM TOOL?

An APM tool is usually used to monitor the performance and the availability of a monitored web-based software

application. An APM tool collects several performance metrics (such as response time) from the monitored application

and mines these metrics to measure the health of the application (e.g., identify potential performance problems using

mining approaches). Most of the metrics that are mined by the APM tools are used in performance regression detection

research as well. Hence, APM tools might be effective in detecting performance regressions using these metrics. APM

tools follow a typical workflow. After installation, 2 the APM tool discovers the different software artifacts of the

application that is being monitored. This discovery step allows the APM tool to visualize the application deployment

structure and to collect fine-grained metrics about the transactions that are processed by the monitored application. A

transaction usually means a web request originating either from a client browser or from another application using a web

service request. Examples of fine-grained metrics include: the amount of time spent in each application component for

each request and the total number of transactions processed by each application component. During the analysis phase, the

APM tool collects the performance metrics periodically. The APM tool mines a historical repository of the collected

metrics to determine whether a transaction is abnormal (e.g., slower than usual). APM then sends alerts to the

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 7, Issue 3, pp: (21-24), Month: July - September 2019, Available at: www.researchpublish.com

Page | 23
Research Publish Journals

practitioners about transactions having slow performance or issues related to the computational resources used by the

monitored application. These alerts can be categorized into three main categories:

 Transaction-related alerts: Information about single transactions such as the response time and the stack trace, in

addition to aggregated information such as the total number of transactions and the average response time.

 Memory-related alerts: Information about memory usage and possible excessive memory usage.

 Database-related alerts: Information about the executed database queries such as query details, number of executed

queries for each transaction and the time consumed to run each query.

We believe that these types of information can be used by practitioners not only to detect performance anomalies in

production due to workload changes, but also to identify performance regressions (where the code is changing but the test

workload is stable) across versions of a software application.

4. PERFORMANCE ANALYSIS APPROACHES

The studied tools use two general mining approaches to detect performance anomalies: 1) baseline-based and 2) threshold

based. Some APM tools use only one approach (usually the threshold-based approach) such as New Relic [8,9] and

Pinpoint. Other APM tools support both approaches, such as AppDynamics and Dynatrace.

1. Baseline-based Approach

In baseline-based approaches, APM tools mine historical performance data to establish a baseline. For example, an

application is expected to have a higher load during the working hours and a lower load during weekends. Hence the

APM tool needs to learn this behavior. In order to detect performance anomalies, APM tools detect metric values that

deviate from this baseline. APM tools use different mining approaches to establish the baseline. For example,

AppDynamics uses the average value of a metric observed during a specific time range to define the baseline. Dynatrace

[5,6] uses other statistical techniques such as the 90th percentile and binomial distribution to calculate the baseline. APM

tools use these baselines as indicators to notify practitioners when their application performance deviates from the

baselines. The specific details of these statistical techniques are not available in the documentation of the commercial

tools. For example, we are unable to identify the parameters of the binomial distribution used by Dynatrace.

2. Threshold-based Approach

A threshold is the value beyond which the performance of the monitored application is considered unacceptable. A

threshold can be calculated using simple statistical methods or it can be configured either by the software practitioners or

by the APM tool itself. APM tools support the following types of thresholds:

• Percentage deviation threshold: When a metric value exceeds a specific percentage above the metric’s average.

• Standard deviation threshold: When a metric value exceeds multiples of standard deviations above the metric’s average.

• Fixed threshold: When a metric value exceeds a predefined fixed value. Usually, a threshold is set for the transaction

response time metric because it is the APM tool’s primary concern. However, some APM tools provide means to define

thresholds for other metrics, such as the failure rate and throughput (in AppDynamics and Dynatrace). Pinpoint uses fixed

thresholds to decide whether the transaction is slow or not based on its response time. Specifically, Pinpoint has four

thresholds for the response time of the transaction: less than one second, less than three seconds, less than five seconds,

and more than five seconds.

5. CONCLUSIONS AND FUTURE WORKS

Application Performance Monitoring consists of software that is designed to help application troubleshooters ensure that

the multitude of applications run as per performance standards and provide a user experience that is as per the user’s

requirements. APM tools provide administrators with the requisite information such as a database query or a specific

method or file that they need to swiftly discover, isolate and solve problems that can adversely hamper an application's

performance. APM tools monitor an application's performance over a fixed course of time and help cloud troubleshooters

understand the effect that different dependencies such as the systems that applications rely on to function properly, have

on an application's performance. Cloud troubleshooters can use the performance metrics, which an APM tool can measure

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 7, Issue 3, pp: (21-24), Month: July - September 2019, Available at: www.researchpublish.com

Page | 24
Research Publish Journals

from a particular application or multiple applications on the same network, to identify the source of the performance

issue. The data APM tools collect includes client CPU utilization, memory demands, data throughput and bandwidth

consumption. Most APM tools include the ability to gather application performance statistics from multiple sources and

correlate them through log files, hardware statistics and network throughput usage reports. The information is then

displayed in a dashboard along with graphs that makes it easier for cloud troubleshooters to read data logs, which removes

the need for them to manually delve through all the applications source files and identify the problem.

REFERENCES

[1] A. Chandra, W. Gong, and P. Shenoy, “Dynamic Resource Allocation for Shared Data Centers using Online

Measurements,” IWQoS, 2003.

[2] A. Chandra and P. Shenoy, “Effectiveness of dynamic Resource allocation for handling Internet Flash Crowds,”

Technical Report TR03-37, Department of Computer Science, University of Massachusetts Amherst, November

2003.

[3] J. Shahabuddin, A. Chrungoo, V. Gupta, S. Juneja, S. Kapoor, and A. Kumar, “Stream-Packing: Resource

Allocation in {Web} Server Farms with a QoS Guarantee,” Lecture Notes in Computer Science.

[4] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi “Dynamic application placement under service and

memory constraints,” in Proceedings of WEA 2005, pp. 391-402.

[5] Dynatrace instrumentation. https://community. dynatrace.com/community/display/DOCDT61/ Instrumentation. Last

accessed Oct 16 2015.

[6] Dynatrace PurePath. https://community.dynatrace.com/community/display/DOCDT60/PurePath+ Explained. Last

accessed Sept 24 2015.

[7] How one second could cost amazon $1.6 billion in sales. http://www.fastcompany.com/1825005/ how-one-second-

could-cost-amazon-16-billion-sales. Last accessed Oct 4 2015.

[8] New Relic. http://newrelic.com/. Last accessed Sept 9 2015.

[9] New Relic custom instrumentation. https://docs.newrelic.com/docs/agents/java-agent/ custom-instrumentation/java-

custom-instrumentation. Last accessed Sept 24 2015.

